35C1-NMR STUDIES OF Co²⁺ CARBONIC ANHYDRASES*

Raymond L. Ward and Karl J. Fritz[†]

Lawrence Radiation Laboratory, University of California

Livermore, California

Received April 10, 1970

Summary: 35 Cl NMR studies of $^{2+}$ substituted carbonic anhydrase (CA) reveal a difference in the pK of hydrolysis for the high and low specific activity forms of the enzyme in agreement with studies on the zinc enzymes. A time dependence was observed for the reaction of $^{2+}$ with bovine apo CA but not with human B apo CA. A CN- titration of the $^{2+}$ CA indicates only one cobalt-chloride binding site. This work indicates that 35 Cl NMR can be used to monitor the interaction of $^{2+}$ ions with proteins.

Substitution of Co²⁺ for Zn²⁺ in carbonic anhydrase results in an active enzyme with properties which are very similar to those of the native Zn²⁺ enzyme. The optical properties of the Co²⁺ enzyme have made it a highly suitable system for studies of the active site of CA.

Recent ³⁵Cl NMR studies of the Zn²⁺ isozymes of CA have indicated an appreciable difference in the Zn²⁺ environments as measured by the pK's for hydrolysis of the metal ion. (1) It is of interest therefore to know whether these differences also pertain to the Co²⁺ system.

²⁵Cl NMR studies of the Zn²⁺ ion in low and high specific activity forms of CA reveal that the pK's for hydrolysis of the metal ion differ by approximately two units. Because the observed pK is a function of the total chloride concentration, it was necessary to plot the observed

This work was performed under the auspices of the U.S. Atomic Energy Commission.

[†]Summer student 1968.

pK vs. log (1 + Cl/K_i) to determine the pK at zero chloride. Upon extrapolation to zero chloride, values of 8.19 and 6.4 were obtained for human B and C CA respectively. In general, however, the value of the pK determined in 0.5 M NaCl can be used for comparative purposes. The pK's for human B and C in 0.5M NaCl are 9.22 and 7.42 while the value for the bovine enzyme is 7.3. These values are good to 0.1 of a unit. (1)

Bovine and Human B apo CA were prepared by dialysis against 0.01M o-phenanthroline at pH 5.5. Addition of 1 mole of Zn²⁺ per protein molecule produced a fully active enzyme. The assay used was the hydrolysis of p-nitrophenylacetate.

A Co²⁺ titration of bovine apo CA appears in Figure 1. Each point results from the addition of one μ 1 of 10⁻³M CoCl₂ to a solution of apo CA in 0.5M NaCl and buffered at pH 6.15. Each point is the average of eight line width measurements. The end point is reasonably well defined at a molar ratio of one Co²⁺ per apo CA molecule. Similar results were obtained with human CA-B.

Cl NMR line width measurements indicate that the rate of formation of the final Co²⁺-bovine CA complex is slow. If Co²⁺ is added to a solution of bovine apo CA at a pH of ~6 at a molar ratio of l:1 the ³⁵Cl NMR line width increases for a number of hours until a maximum value is reached. If Zn²⁺ is added, however, no time lag is observed in obtaining a maximum ³⁵Cl line broadening. No such time lag was observed upon the addition of Co²⁺ or Zn²⁺ to human apo CA-B. These observations are in agreement with the reactivation of the enzymes as determined by kinetic means. (2)

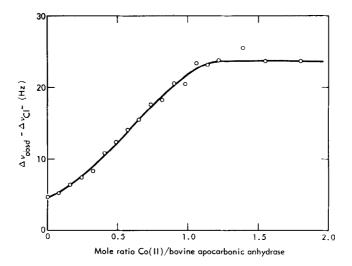


Fig. 1. Line width, $\Delta \nu_{\rm obsd}^{-}\Delta \nu_{\rm Cl}^{-}({\rm Hz})$, vs. mole ratio Co $^{2+}$ /apo bovine carbonic anhydrase. The solution was 0.5M NaCl, 0.54 mg per ml of apo bovine carbonic anhydrase and 0.05M Bis-Tris, pH 6.15.

Fig. 2. Line width, $\Delta \nu$ obsd $\Delta \nu$ Cl (Hz), vs. pH for a solution containing 0.86 mg per ml of apo bovine carbonic anhydrase and 2.86 x 10^{-5} M Co²⁺ in 0.5M NaCl. The pK value is 7.94.

The pH titrations of Co^{2+} substituted bovine CA and human CA-B in 0.5M NaCl appear in Figures 2 and 3. In both cases the solutions were prepared and stored overnight at 4° before the pH titration was carried out. The pK for the Co^{2+} substituted bovine enzyme is 7.94 while that for human B is 9.06. The pK for Co^{2+} human CA-B agrees with that of the zinc protein, whereas the Co^{2+} substituted bovine enzyme is \sim 0.5 of a unit higher. The difference in pK's for the two Co^{2+} inzymes is in good agreement with the similar difference in the Zn^{2+} proteins.

An interesting question about the Co²⁺ enzyme concerns the number of metal coordination sites occupied by the protein and available for solvent interaction. Dennard and Williams⁽³⁾ have discussed this point

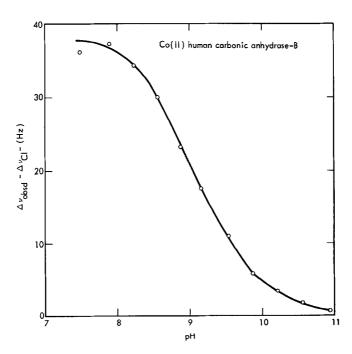


Fig. 3. Line width, $\Delta \nu_{\rm obsd}$ $^{-}\Delta \nu_{\rm Cl}$ (Hz), vs. pH for a solution containing 0.92 mg per ml of apo human carbonic anhydrase B and 3.1 x 10^{-5} M Co²⁺ in 0.5 M NaCl. The pK value is 9.06.

at length. In a manner analogous to studies with the Zn^{2+} enzymes (1) Co^{2+} human CA-B was titrated with KCN at pH 8. The addition of KCN reduces the 35 Cl line width to that of aqueous Cl⁻. The titration is reasonably sharp with an endpoint at a molar ratio of one CN⁻ to one Co^{2+} . This data indicates only one available Cl⁻ coordination site and presumably one H_2O site on the Co. If the protein supplied the same number of ligands to the Co^{2+} as it does to the Zn^{2+} this would indicate a four coordinate Co^{2+} ion. It should be noted, however, that whereas the optical spectrum of the cyanide substituted Co^{2+} enzyme agrees well with that expected for a tetahedral Co^{2+} the spectrum of aquo Co^{2+} enzyme is not as well understood. The possibility exists that CN⁻ produces a conformational change which results in a tetrahedral species. (3)

References

- 1. Ward, R. L., Biochemistry (in press).
- Lindskog, S., and Malmström, B. C., J. Biol. Chem. 237, 1129 (1962).
- 3. Dennard, A.E., and Williams, R.J.P. in Transition Metal Chemistry, Carlin, R. L., Ed., New York, N.Y., Marcel Dekker, Vol. 2., p. 116.